πŸš€ Now Available

AI-First Programming Language Built for Performance

AquaLua combines Python-like syntax with Rust-like type safety and a high-performance C backend. Built specifically for AI and machine learning development with 2-5x speedup over pure Python.

πŸ‘€ See Examples πŸ’» GitHub
2-5x Faster
35+ Examples
Zero Dependencies

Created by Abdullah Zeyad Alshaikh

hello.aq
fn main() {
    print("Hello, AquaLua!")
    
    // Variables and types
    let name: string = "AquaLua"
    let version: float = 1.0
    const MAX_ITERATIONS = 1000
    
    // AI/ML operations
    tensor weights = random([10, 5])
    tensor input_data = ones([1, 10])
    tensor result = matmul(weights, input_data)
    tensor output = relu(result)
    
    // Control flow
    if output.sum() > 0 {
        print("Positive activation detected!")
    }
    
    print("AI computation complete!")
}

Why Choose AquaLua?

Designed from the ground up for AI development with modern language features

⚑

High Performance

C runtime backend delivers 2-5x speedup over pure Python with automatic fallback

🧠

AI/ML First

Built-in tensor operations, neural networks, and ML primitives out of the box

🐍

Python Integration

Seamless interop with Python libraries and ecosystem using ast_exec

🎨

Modern Syntax

Clean, readable syntax inspired by Python and Rust with type safety

πŸ’»

Professional IDE

Full-featured development environment with syntax highlighting and debugging

πŸ“¦

Zero Dependencies

Precompiled executables require no additional installations or setup

Benchmark Results

Real-world performance comparisons with Python

Matrix Multiplication

Python 100ms
AquaLua 45ms
2.2x

Tensor Operations

Python 80ms
AquaLua 32ms
2.5x

Neural Network Forward

Python 150ms
AquaLua 65ms
2.3x

See AquaLua in Action

From simple scripts to complex AI models

basic.aq
// Variables and functions
let name = "AquaLua"
let age = 25
const MAX_SIZE = 1000

fn greet(name: string) -> string {
    return "Hello, " + name + "!"
}

fn main() {
    let user = "Developer"
    let message = greet(user)
    print(message)
    
    // Control flow
    if age >= 18 {
        print("Adult user")
    } else {
        print("Young user")
    }
    
    // Loops
    for i in range(0, 5) {
        print("Count: " + i)
    }
}
neural_network.aq
fn main() {
    // Create tensors
    tensor weights = random([10, 5])
    tensor biases = zeros([5])
    tensor input_data = ones([1, 10])
    
    // Tensor operations
    tensor result = matmul(weights, input_data)
    tensor output = add(result, biases)
    
    // Activation functions
    tensor activated = relu(output)
    tensor probabilities = softmax(activated)
    
    // Create neural network layers
    layer dense1 = dense(input_size=784, output_size=128, activation="relu")
    layer dense2 = dense(input_size=128, output_size=10, activation="softmax")
    
    // Forward pass
    tensor hidden = dense1.forward(input_data)
    tensor predictions = dense2.forward(hidden)
    
    print("AI computation complete!")
    print("Predictions shape: " + predictions.shape)
}
python_integration.aq
fn main() {
    print("AquaLua + Python Integration")
    
    // Execute Python code for data analysis
    ast_exec("
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

# Create sample data
data = np.random.randn(1000)
df = pd.DataFrame({'values': data})

# Statistical analysis
print(f'Mean: {df.values.mean():.2f}')
print(f'Std: {df.values.std():.2f}')

# Visualization
plt.figure(figsize=(10, 6))
plt.hist(data, bins=50, alpha=0.7, color='blue')
plt.title('Data Distribution')
plt.xlabel('Value')
plt.ylabel('Frequency')
plt.grid(True, alpha=0.3)
plt.show()
    ")
    
    // Continue with AquaLua operations
    let result = sum([1, 2, 3, 4, 5])
    print("AquaLua sum result: " + result)
    
    print("Integration complete!")
}

Documentation & Resources

πŸ“š

Language Syntax

Complete syntax reference and language guide

Read More β†’
πŸ”§

API Reference

Built-in functions and operations reference

Read More β†’
πŸ—οΈ

Architecture

System design and internal components

Read More β†’
πŸ’‘

Examples

Code examples and tutorials

Read More β†’

Ready to Get Started?

Download AquaLua and start building AI applications with high-performance computing.

βœ… Professional IDE included
βœ… 35+ example programs
βœ… Complete documentation
βœ… High-performance C runtime

AquaLua v1.0.0

~15 MB β€’ Windows 10/11